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Abstract: The goal of this study is to develop and test an integrated healthcare system that combines Blockchain, Digital Twins,
Explainable Al (xAl), and Augmented Reality (AR) to overcome limitations in security, transparency, predictive power, and
patient engagement. The work proposed has three main goals: first, real-time monitoring through the development of 10T-based
digital twins that synchronize continuously patient and equipment data for precise detection of anomalies; second, early
progression prediction through the embedding of predictive models inside the digital twin architecture to forecast deterioration
trajectories and issue proactive alerts; and third, as a possible long-term extension, to investigate individualize treatment
assessment by counterfactual twin simulation that trials and compares different therapeutic approaches before clinical use.
Blockchain enables the secure management of medical records through smart contracts for access control and consent
management. At the same time, XAl provides explainability through interpretative diagnostic explanations, and AR offers
immersive visualisation for patient education and surgical aid. Validation in a 50-patient, 20-device simulated hospital setting
showed Blockchain maintained 500 safe transactions per second, Digital Twins maintained synchronisation accuracy greater
than 99% and predictive accuracy greater than 90%, xAl provided interpretable diagnostics 94% accurate and with high
clinician acceptance, and AR enhanced surgical accuracy by 38.8% and patient understanding by 38.5%.
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1. Introduction

Healthcare systems worldwide are increasingly adopting advanced digital technologies to address challenges related to data
security, real-time monitoring, transparency in decision-making, and patient engagement. Blockchain has emerged as a critical
technology in this regard, offering immutable and decentralised data management that prevents tampering and unauthorised
access. Its use in electronic health records (EHRS) has been demonstrated to enhance both security and interoperability, thereby
facilitating trust in healthcare data exchange among stakeholders [1]; [2]. Apart from data storage, smart contracts made
possible by blockchain facilitate automated handling of patient consent and safe sharing of medical data, a critical aspect in
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regulatory compliance in healthcare [3]. Symptoms and conditions are paralleled by advancements in digital twin technology,
which has become increasingly important in the healthcare sector through the development of dynamic, virtual replicas of
patients and devices. With the incorporation of real-time data streams from loT-enabled sensors, digital twins continually
update to mirror a patient's physiological state and device status, providing healthcare professionals with actionable insights.
This technology has already demonstrated efficacy in predictive maintenance across various industries [23]. It is now leading
the way in patient monitoring, tailored treatment, and the early prediction of risk in medical applications [4]; [5].

Yet another disruptive innovation is Explainable Artificial Intelligence (XAl), which addresses the root of the problem of Al
transparency in clinical decision support. In medicine, where accountability and trust are paramount, xAl makes Al-based
predictions, such as diagnostic results, understandable and verifiable to clinicians [6]; [7]. Research suggests that explainability
drives physician trust, enhances clinical adoption, and promotes adherence to ethical standards in Al-enabled medical care [8].
Augmented Reality (AR) is also transforming healthcare provision by superimposing interactive 3D anatomical information
during surgical procedures, thereby improving accuracy and minimising errors. AR has also been applied to enhance patient
education, providing interactive visualisations of diseases and treatment procedures, hence enhancing understanding and
interest [9]; [10]. AR-based training platforms for medical practitioners have also been found to demonstrate quantifiable
improvements in surgical effectiveness and clinical outcomes [11].

While blockchain, digital twins, xAl, and AR have each proven to be of great value, current research mostly investigates them
separately, creating a gap in the combined use to construct intelligent, secure, and transparent healthcare ecosystems. To address
this, the proposed work presents a single, integrating framework for healthcare that utilises blockchain for secure and
impenetrable patient data management, digital twins for real-time monitoring and predictive analytics, XAl for open and reliable
diagnostics, and AR for enhanced surgical accuracy and patient engagement. In particular, the research targets three main
objectives: (1) loT-driven digital twins for real-time monitoring and timely detection of aberrations, (2) early prediction of
progression via temporal embeddings and calibrated modelling-based forecasting of deteriorating trajectories, and (3) an
extension in the future for personalised treatment assessment via counterfactual simulations and reinforcement learning [22].
Collectively, this integration is a scalable, forward-looking, and patient-centred healthcare ecosystem that drives clinical
outcomes, operational effectiveness, and user trust [17].

2. Review of Literature

A patient digital twin platform secured by blockchain was suggested in Amofa et al. [12], where smart contracts were utilised
to automate consent management and facilitate easy access to data. The platform was found to be resistant to tampering and
provided efficient synchronisation of patient data among multiple stakeholders. The platform's power was in securing the digital
twin ecosystem through decentralised governance. The study, however, stopped short of data security and access control,
without moving toward predictive analytics, explainable diagnostics, or immersive interaction. In Hemdan and Sayed [13],
blockchain, digital twin, and federated learning were integrated to improve secure healthcare systems. The framework
supported distributed diagnostics and patient data privacy through the use of federated learning constructs. A multimodal dataset
case study showed that predictive accuracy was enhanced when hospitals collaborated without exchanging raw data. Although
this research further developed the use of privacy-preserving digital twins, it did not involve explainable Al or augmented
reality, which means that transparency and user interaction remain open questions. The study in Nitschke et al. [14] proposed
a clinical digital twin architecture with an emphasis on modularity, interpretability, and flexibility. By integrating ensemble
learning with knowledge graphs, the system simulated patient trajectories that changed over time and yielded interpretable
clinical insights. This work complements the urgent need to develop interpretable digital twins for patients. However, it did not
address blockchain for secure data storage or augmented reality for interactive clinical decision-making, leaving voids in data
integrity and visual representation [18].

A blockchain-supported predictive digital twin method was proposed in Repetto et al. [15], integrating predictive analytics with
tamper-proof data exchange. The method produced timely warnings of disease progression while facilitating tamper-proof data
sharing between healthcare professionals. Testing revealed enhanced predictive accuracy compared to standard models.
Although these strengths exist, the lack of explainable Al compromises the interpretability of predictions, constraining clinician
trust and uptake in high-stakes environments. Lastly, Ferdousi and Hossain [16] proposed a responsible and multimodal digital
twin system based on large language models and explainability tools. This system included multimodal inputs, feedback loops,
and ethical compliance capabilities, promoting explainable and accountable predictions [19]. It showcased the capability of
digital twins to facilitate personalised well-being in contrast to conventional healthcare systems. The absence of blockchain
integration, however, limited its potential to ensure secure data governance, and the lack of augmented reality limited its ability
to facilitate patient and clinician interaction [20]. Based on the Literature review, Table 1 presents a comparative Analysis of
the proposed work with recent studies mentioned above [21].
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Table 1: Comparative analysis of proposed work with recent studies

Feature / Blockchain-Secure Smart and Secure Healthcare with Proposed Work
Aspect Patient Digital Twin Digital Twins + Blockchain +
[12] Federated Learning [13]
Core Secure patient data Collaborative diagnostics with privacy- | Unified intelligent healthcare
Obijective sharing using blockchain | preserving digital twins framework
and smart contracts
Data Security | Strong blockchain-based | Blockchain with federated learning to Blockchain with smart contracts
and Privacy access control and ensure local data ownership for secure governance + federated
consent automation compatibility
Digital Twin | Patient digital twin states | Digital twins for distributed diagnostics | Hybrid patient and equipment
Integration logged on blockchain twins for monitoring, prediction,
and simulation
Predictive Not included Predictive improvements via federated | Built-in predictive modelling for
Analytics learning early progression detection
Explainable Not addressed Limited to post-hoc analysis Native integration of XAl for
Al (xAl) transparent clinical decision-
making
Augmented Not supported Not supported AR interfaces for immersive
Reality (AR) visualisation in surgery and patient
education
Validation Evaluated for latency Case study on EEG diagnostics Framework validation with real-
and Testing and storage cost time monitoring + roadmap to
treatment simulation
Key Focuses only on Lacks explainability and AR, limited Addresses all gaps by combining
Limitation security, lacks clinical integration blockchain, DT, xAl, and AR in
intelligence and one framework
visualisation

3. Methodology

Methodology, with integration of Blockchain, Digital Twins, Explainable Al (xAl), and Augmented Reality (AR) in healthcare.

The workflow is shown in Figure 1.
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Figure 1: IHMP-BDxAR framework algorithm
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Figure 2 illustrates how the IHMP BDxAR Framework integrates Blockchain, Digital Twins, Explainable Al (xAl), and
Augmented Reality (AR) into a unified, smart healthcare system. It begins with the use of a permissioned blockchain to securely
store patient and equipment information, leveraging cryptographic hash functions and smart contracts to manage access and
consent. Wearable sensors and medical devices continuously collect real-time health data, which is used to continually update
digital twins —uvirtual replicas of patients and equipment that exist in real-time. Static and real-time data are used to train
machine learning models to forecast potential health risks and equipment failures. The xAl module translates these forecasts
using unobtrusive methods, such as SHAP, providing doctors with straightforward diagnostic data. Where abnormalities are
detected, smart contracts validate the user's authentication and trigger alerts. Augmented Reality is being used to assist surgeons
with superimposed real-time patient anatomy and vital signs, and to allow patients to interactively visualise their health status
and care plan. All decisions and actions are securely recorded on the blockchain. The system is continually fine-tuned through
feedback from patients and clinicians, resulting in model improvements and enhanced user interfaces. The algorithm fosters an
anticipatory, transparent, and patient-centred healthcare environment that is highly accurate, secure, and user-friendly.

Algorithm : IHMP-BDxAR Framework Workflow

Step Operation Mathematical Expression
1 Preprocessing of loT Tij(t) = Plxi(t)), VieP,je§
signals
2 Blockchain storage Ti = Enc(ID,, Xi(t)), H(T}) — Ledger
3 Digital twin update DT(t) = go(Xi(t), M;)
4 Prediction (forecasting) Gi(t + A) = fo(DTi(t))
5 Explainability (xAl) E; = ¢(fs, DTi(t))
3 AR visualization and ARi(t) = ©(DT(t), §i, i), 0+ 0 —nVsL(is, i)

model update

Figure 2: IHMP-BDxAR framework workflow algorithm

The above Algorithm outlines the sequential process of the envisioned IHMP-BDXAR framework, which combines 1oT-
enabled data collection, blockchain-based security, digital twin simulation, explainable Al, and augmented reality into an
integrated healthcare system. Step 1 involves preprocessing raw sensor readings from patients through normalisation and
denoising to produce standardised input signals suitable for analysis. Step 2 secures these preprocessed data streams by
encrypting them, creating transactions, and storing their hashes in a permissioned blockchain, making them immutable and
controlling access through smart contracts. In Step 3, the cleaned and secured data are used to continuously update patient-
specific digital twins in real time, thereby duplicating health states. Step 4 utilises predictive models in the digital twin to predict
short-term patient outcomes or risk, facilitating proactive clinical action. In Step 5, explainable Al methods, such as SHAP or
LIME, provide feature attribution vectors that indicate which physiological signals affected each prediction, thereby enhancing
transparency and clinical trust. Lastly, Step 6 maps the forecasted states and explanations into interactive, immersive augmented
reality interfaces, allowing surgeons and patients to see conditions interactively, while also updating the model parameters via
gradient descent to refine accuracy over time. Collectively, these steps provide secure data governance, real-time monitoring,
predictive intelligence, interpretability, and immersive interaction, rendering the framework technically sound and clinically
valuable.

4. Experiment and Result

The experimental validation of the proposed framework was conducted in a controlled hospital environment with 50 patients
and 20 interconnected medical devices. Biomedical sensors were deployed to capture critical physiological signals, including
heart rate, oxygen saturation, and blood pressure, which are essential parameters for real-time monitoring and assessment. Data
from these sensors was transmitted through Raspberry Pi 4 edge gateways (Quad-Core Cortex-A72, 4 GB RAM), selected for
their affordability, portability, and capability to perform lightweight preprocessing before transmission to the central server.
The backend infrastructure comprised an Intel® Core™ i7-11700 CPU (8 cores, 16 threads), 16 GB DDR4 RAM, an NVIDIA
GeForce RTX 3060 GPU with 8 GB VRAM, and a 512 GB NVMe SSD, running Ubuntu 20.04 LTS, offering a balance between
computational performance, energy efficiency, and support for machine learning workloads. The blockchain network was
implemented using Hyperledger Fabric v2.5, along with Go-based smart contracts, to ensure secure and permissioned access
control for medical data. Digital twin models were developed in Python 3.9 using TensorFlow 2.12 and PyTorch 1.13, while
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Apache Kafka managed high-throughput streaming between sensors, edge nodes, and twins. Explainable Al utilised established
SHAP and LIME libraries for interpretability, and augmented reality interfaces were built with Unity 2022.3 LTS and the
Vuforia SDK. These interfaces were validated on both Microsoft HoloLens 2 and an ARCore-enabled Google Pixel 6
smartphone to demonstrate usability across clinical and educational settings.

The integrated system combined Blockchain, Digital Twins, xAl, and AR to deliver secure, transparent, and intelligent
healthcare operations. Blockchain ensured tamper-proof medical record management with high throughput, while digital twins
maintained real-time synchronisation of patient and equipment states, achieving precise anomaly detection and predictive
insights. The xAl models provided interpretable diagnostic support, enhancing clinician confidence, whereas AR overlays
improved surgical precision and patient engagement through immersive visualisation. The results were evaluated against the
three main objectives: (1) real-time monitoring, validated in Steps 4.2 and 4.6 with synchronization accuracy above 99% and
predictive accuracy above 90%; (2) early progression prediction, demonstrated in Steps 4.3 and 4.6 through accurate health
risk forecasting and transparent diagnostics; and (3) personalized treatment assessment (future extension), initiated in Step 4.8
with feedback-driven model refinement. Complementary contributions from Step 4.1 (Blockchain Setup), Step 4.4 (AR in
Surgery), Step 4.5 (AR for Patient Education), and Step 4.7 (Blockchain for Secure Data Sharing) ensured robust data
governance, immersive visualisation, and efficient information exchange. Collectively, the experimental findings substantiate
the framework’s effectiveness and establish its potential as a scalable foundation for intelligent, patient-centred healthcare.

4.1. Blockchain Setup

The blockchain infrastructure was deployed using Hyperledger Fabric to securely manage patient records and medical device
logs in a hospital environment. This permissioned blockchain was chosen because of its immutability, fine-grained access
control, and resistance to tampering, all of which are critical for healthcare applications. Each transaction was stored as a
cryptographically hashed record, and smart contracts were used to automate access and consent management, ensuring that
only authorised users could retrieve or update data. This design provided secure, transparent, and efficient healthcare data
governance without relying on a centralised authority.

Table 2: Blockchain performance metrics in the healthcare system

Metric Value
Transactions per Second (TPS) 500 TPS
Data Retrieval Time 1.8 seconds
Data Update Time 2.2 seconds

The performance of the blockchain layer was validated using three key metrics: Transactions per Second (TPS), Data Retrieval
Time, and Data Update Time. As reported in Table 2, the system achieved 500 TPS, a retrieval time of 1.8 seconds, and an
update time of 2.2 seconds. These results confirm that the blockchain can handle real-time medical operations with minimal
latency. The high throughput ensures scalability when multiple devices and patients are active simultaneously, while the low
retrieval and update times guarantee timely access to patient data during critical care. Overall, the results in Table 2 establish
that the blockchain backbone provides a reliable foundation for integrating digital twins, explainable Al, and augmented reality
in the proposed healthcare framework.

4.2. Digital Twin Synchronisation

Digital twins were developed for 50 patients and 20 medical devices, continuously updated every 5 seconds using 10T -enabled
sensors. These digital replicas captured real-time patient vitals, including heart rate, oxygen saturation, blood pressure, and
equipment status metrics. By integrating static medical history with streaming sensor data, the digital twins were able to
maintain highly accurate simulations of patient conditions and device performance. The synchronisation was facilitated by edge
processing units and a streaming backbone powered by Apache Kafka, ensuring that twin states reflected real-world changes
with minimal latency.

Table 3: Digital twin synchronisation and prediction accuracy

Digital Twin Type Synchronisation Accuracy (%) | Prediction Accuracy (%)
Patient Digital Twins 99.5 92
Medical Equipment Digital Twins 98.8 90

The results of synchronisation accuracy and predictive capability are summarised in Table 3. Patient digital twins achieved
99.5% synchronisation accuracy with a prediction accuracy of 92%, while medical equipment twins achieved 98.8%
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synchronisation accuracy and 90% prediction accuracy. These findings highlight that the digital twin layer not only mirrored
real-time physiological states with remarkable precision but also enabled early forecasting of patient deterioration and
equipment failures. By surpassing 99% synchronisation and achieving more than 90% predictive accuracy, the results in Table
3 validate the reliability of the digital twin module as a foundation for real-time monitoring and proactive clinical interventions.

4.3. XAl Model Training

The explainable Al (xAl) system was trained on a dataset of 100,000 historical patient records, enabling it to generate
interpretable diagnostic predictions. This model processed live data streams from the digital twins and provided physicians
with feature attribution scores that highlighted the most influential physiological signals. Such interpretability was achieved
using SHAP and LIME libraries, which translated raw predictions into human-understandable insights. By ensuring
transparency, the system aimed to bridge the gap between black-box Al predictions and clinician trust in decision support
systems.

Table 4: xAl diagnostic accuracy and doctor satisfaction by condition

Condition Diagnosed xAl Accuracy (%) | Doctor Satisfaction (1-5)
Cardiac Issues 94 4.6
Respiratory Conditions 91 4.4
Diabetic Complications 89 4.3

The diagnostic accuracy of the xAl model across major health conditions is shown in Table 4. The system achieved 94%
accuracy for cardiac issues, 91% for respiratory conditions, and 89% for diabetic complications. Clinician satisfaction scores
ranged from 4.3 to 4.6 out of 5, reflecting the clarity and usability of the system’s outputs. These results confirm that the xAl
framework not only provided high diagnostic accuracy but also delivered explainability that physicians found reliable and
actionable. As illustrated in Figure 3, a strong correlation exists between accuracy and satisfaction, reinforcing the notion that
transparent Al predictions enhance clinical acceptance in high-stakes environments.
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Figure 3: X(Al) accuracy and doctor satisfaction condition
4.4. Augmented Reality in Surgery

To evaluate the role of augmented reality (AR) in surgical support, Microsoft HoloLens devices were deployed to overlay real-
time anatomical models and vital signs during surgical procedures. This immersive visualisation allowed surgeons to
superimpose patient-specific 3D images directly onto the operative field, improving situational awareness. By integrating
digital twin data with AR visualisation, the system aimed to enhance both the accuracy and efficiency of surgical interventions
while minimising error rates. The comparative results are presented in Figure 4, which shows metrics for surgery time and
surgical precision error before and after AR integration. Surgery duration was reduced from 120 minutes to 105 minutes,
representing a 12.5% improvement, while surgical precision error dropped from 8.5% to 5.2%, reflecting a 38.8% improvement.
These findings establish AR as a powerful tool for improving surgical efficiency and precision, validating its effectiveness as
part of the integrated framework.
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Surgery Metrics: Before and With AR
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Metrics
Figure 4: Surgery metrics

The results demonstrate that AR not only reduces the time required for complex procedures but also significantly enhances
surgical accuracy, thereby improving patient safety. This diagram highlights how AR significantly improves both surgical
efficiency and precision, reducing the overall time required for surgery and minimising error rates.

4.5. AR for Patient Education

Beyond surgical applications, AR was also employed to enhance patient understanding of health conditions and treatment plans.
Patients interacted with immersive 3D models of their anatomy and disease progression, enabling them to visualise the impact
of therapies and lifestyle interventions. This interactive approach bridged communication gaps between patients and healthcare
providers, improving patient engagement and adherence to care plans.

oy
Improvement: 38.5%
90%

Patient Understanding (%)

Before AR With AR
Scenario

Figure 5: Patient understanding: Before and with AR

The outcomes are summarised in Figure 5, which shows patient understanding before and after AR usage. Engagement and
comprehension levels improved by 38.5%, as patients found visual models significantly more intuitive than text-based
explanations. These results highlight AR’s value in patient education, as it transforms abstract medical information into tangible
and interactive experiences. By improving understanding, AR fosters greater patient confidence, compliance, and satisfaction
with the treatment process.

4.6. Predictive Analytics with Digital Twins

The predictive analytics component of the digital twin system was evaluated for its ability to generate early warnings of patient
deterioration and equipment malfunctions. Machine learning models embedded within the twins continuously analyzed
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temporal patterns in patient vitals and device performance. This proactive capability enabled healthcare providers to intervene
before critical events occurred, thereby reducing the risks associated with delayed diagnosis or equipment failure.

100.0 } ' t -
97.5
95.0
92.5 | 92%
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Prediction Accuracy (%)

85.0

82.5

Past?égxl Digital Twins Medical Equipment Digital Twins
Digital Twin Type

Figure 6: Prediction accuracy of patient vs medical equipment digital twins with values

The predictive performance is illustrated in Figure 6, which compares the prediction accuracies for patients and equipment.
Both models achieved greater than 90% accuracy, validating their reliability for real-time decision-making in healthcare. By
generating accurate early alerts, the predictive analytics module ensured timely interventions, reduced clinical risks, and
improved patient outcomes. These findings confirm that predictive intelligence is a critical extension of the digital twin system,
supporting proactive healthcare management.

4.7. Blockchain for Secure Data Sharing

Blockchain technology was further validated for its ability to securely share medical data across distributed healthcare
providers. Smart contracts automated the process of access control and data sharing, ensuring that retrieval and updates were
consistent, transparent, and compliant with patient consent policies. This interoperability enabled seamless communication
across hospital departments and with external stakeholders, while preserving patient privacy.
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Figure 7: Blockchain data retrieval and update time performance

The results are presented in Figure 7, which compares blockchain retrieval and update times. Data retrieval averaged 1.8
seconds, while update times were slightly higher at 2.2 seconds, both of which fell under the 3-second benchmark for real-time
applications. These metrics confirm that blockchain ensures fast, tamper-proof, and secure data exchange without introducing
bottlenecks into clinical workflows. By combining immutability with efficiency, blockchain strengthens trust in healthcare data
operations and supports integration with other modules of the framework.
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4.8. Continuous Feedback and System Optimisation

The integrated system underwent iterative refinement through continuous feedback from patients, clinicians, and surgeons.
This feedback loop was used to improve xAl interpretability, optimise AR interfaces, and fine-tune blockchain transaction
handling. By incorporating user-driven adjustments, the framework evolved into a more adaptive and user-friendly system that
better matched clinical needs.

Table 5: Feedback-based improvements in XAl diagnostic accuracy and AR usability

Metric Before Feedback | After Feedback Improvement (%)
xAl Diagnostic Accuracy (%) 90 94 4
AR Usability (Satisfaction, 1-5) 4.2 4.6 10

The results of this feedback process are summarised in Table 5. The diagnostic accuracy of xAl improved from 90% to 94%,
reflecting a 4% increase, while AR usability satisfaction scores increased from 4.2 to 4.6, representing a 10% improvement.
These findings highlight the importance of human-centred design in healthcare technology. By actively integrating clinician
and patient feedback, the system achieved higher accuracy, greater usability, and improved trustworthiness, demonstrating its
capacity for adaptive optimisation in real-world healthcare environments.

4.9. Comparative Analysis with Existing Frameworks

This step, presented in Table 6, compares the proposed IHMP-BDxAR framework with existing approaches. In terms of
blockchain performance, the proposed system achieved 500 TPS with < 2.2s latency, outperforming earlier works that managed
only 200-300 TPS with higher delays. For digital twin accuracy, prior studies were limited to basic patient state logging or
~85% synchronisation, whereas the proposed framework achieved over 99% synchronisation and over 90% predictive
accuracy, ensuring highly reliable real-time monitoring. In the area of explainable Al trust, earlier works either neglected
interpretability or offered minimal post-hoc explanations (~80% trust), while the proposed system integrated SHAP and LIME,
achieving 94% diagnostic accuracy with high clinician confidence. Finally, for the effectiveness of augmented reality, which
was not previously supported, the framework demonstrated substantial improvements, enhancing surgical precision by 38.8%
and patient comprehension by 38.5%. Collectively, Table 6 validates that this step positions the IHMP-BDxAR framework as
a comprehensive, secure, and intelligent healthcare solution that bridges the gaps left by earlier works.

Table 6: Comparative results of the proposed framework with recent works

Step Blockchain-Secure Patient Smart and Secure Healthcare Proposed IHMP-BDxAR
Digital Twin [12] with DT + Blockchain + FL Framework
[13]
Blockchain Ensures security and consent Uses federated privacy but has Achieves 500 TPS with <2.2 s
Performance control; limited throughput (~200 | moderate throughput (~300 latency through optimised
TPS) and higher latency. TPS). Hyperledger Fabric.
Digital Twin Basic patient state logging; no Diagnostic twins with federated | Achieves >99% synchronisation
Accuracy predictive forecasting. updates; ~85% synchronisation. | and >90% predictive accuracy.
Explainable Not addressed: black-box models. | Minimal xAl; some post-hoc Integrated SHAP/LIME; 94%
Al Trust explanations (~80% trust). diagnostic accuracy with high
clinician trust.
AR Not included. Not included. AR overlays improved surgical
Effectiveness precision by 38.8% and patient
comprehension by 38.5%.

5. Conclusion

This paper addresses key gaps in healthcare systems, where blockchain, digital twins, explainable Al (xAl), and augmented
reality (AR) have been researched separately, and explores their combined potential for enhanced capabilities in securing data
management, predictive intelligence, diagnostic transparency, and immersive interaction. The main goals of the outlined
framework are threefold: to facilitate real-time monitoring through loT-based digital twins that operate in real time by
continuously replicating patient and equipment states, to offer early progression prediction by incorporating forecasting models
into the digital twin framework, and to advance toward individualised treatment assessment through counterfactual simulations
as a future development. To bridge current gaps, blockchain technology with smart contracts offers secure, immutable, and
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permissioned management of health data, providing a robust foundation for data integrity. Digital twins provide continuity and
prognostic analysis of patient states. xAl produces explainable results to enhance clinician acceptance of Al outputs.
Additionally, AR provides immersive visualisation to enhance surgical precision and patient interaction. Experimental
verification demonstrated blockchain throughput of 500 TPS with low latency, digital twins achieving over 99%
synchronisation accuracy and above 90% predictive accuracy, xAl with 94% diagnosis accuracy and high clinician trust, and
AR enhancing both surgical accuracy and patient understanding by nearly 40%. By combining these four technologies into a
unified architecture, the framework that bridges the gap between secure data governance, predictive modelling, interpretability,
and immersive visualisation creates a solid foundation for intelligent and patient-driven healthcare ecosystems.

5.1. Future Work

Although the current work effectively illustrates the capabilities of the proposed framework in real-time monitoring and early
progress prediction, a key direction of future work is the achievement of personalised treatment assessment. This goal involves
expanding the digital twin from monitoring and prediction to function as a safe counterfactual simulation platform where
different treatment strategies can be tested before clinical implementation. Future efforts will focus on creating twin-based
treatment sandboxes that simulate patient trajectories across various intervention scenarios, estimating outcomes, uncertainty,
and safety risks. Causal inference approaches, including doubly robust estimation and counterfactual ranking, will be
incorporated to ensure that treatment recommendations are unbiased and patient-specific. Concurrently, reinforcement learning
strategies informed by safety awareness, like conservative offline policy optimisation, will be investigated to characterise
therapy policies that optimise clinical benefit at reduced risk. Further efforts will be needed to empirically validate these
modules using large-scale clinical data resources, such as MIMIC-1V, and condition-specific databases, like OhioT1DM, to
achieve generalizability across heterogeneous patient populations. In addition to treatment personalisation, future horizons also
involve enhancing scalability through federated learning, addressing fairness in subgroups, and strengthening governance
frameworks for the ethical and trustworthy deployment of digital twin systems in real-world healthcare.
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