
FMDB Transactions on Sustainable Health Science Letters 
___________________________________________________ 

Vol.3, No.2, 2025        

 

Digital Twins in Advanced Healthcare Integration 

 

 
 

 
 

R. J. Shwetha1, B. S. Pradeep², T. Shreekumar³,* 

1,2,3Department of Computer Science and Engineering, Mangalore Institute of Technology and Engineering, Mijar, 

Moodabidri, Karnataka, India. 

shwetha@mite.ac.in1, pradeepbs@mite.ac.in2, shreekumar@mite.ac.in3 

 

 

Abstract: The goal of this study is to develop and test an integrated healthcare system that combines Blockchain, Digital Twins, 

Explainable AI (xAI), and Augmented Reality (AR) to overcome limitations in security, transparency, predictive power, and 

patient engagement. The work proposed has three main goals: first, real-time monitoring through the development of IoT-based 

digital twins that synchronize continuously patient and equipment data for precise detection of anomalies; second, early 

progression prediction through the embedding of predictive models inside the digital twin architecture to forecast deterioration 

trajectories and issue proactive alerts; and third, as a possible long-term extension, to investigate individualize treatment 

assessment by counterfactual twin simulation that trials and compares different therapeutic approaches before clinical use. 

Blockchain enables the secure management of medical records through smart contracts for access control and consent 

management. At the same time, xAI provides explainability through interpretative diagnostic explanations, and AR offers 

immersive visualisation for patient education and surgical aid. Validation in a 50-patient, 20-device simulated hospital setting 

showed Blockchain maintained 500 safe transactions per second, Digital Twins maintained synchronisation accuracy greater 

than 99% and predictive accuracy greater than 90%, xAI provided interpretable diagnostics 94% accurate and with high 

clinician acceptance, and AR enhanced surgical accuracy by 38.8% and patient understanding by 38.5%.  
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1. Introduction 

 

Healthcare systems worldwide are increasingly adopting advanced digital technologies to address challenges related to data 

security, real-time monitoring, transparency in decision-making, and patient engagement. Blockchain has emerged as a critical 

technology in this regard, offering immutable and decentralised data management that prevents tampering and unauthorised 

access. Its use in electronic health records (EHRs) has been demonstrated to enhance both security and interoperability, thereby 

facilitating trust in healthcare data exchange among stakeholders [1]; [2]. Apart from data storage, smart contracts made 

possible by blockchain facilitate automated handling of patient consent and safe sharing of medical data, a critical aspect in 
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regulatory compliance in healthcare [3]. Symptoms and conditions are paralleled by advancements in digital twin technology, 

which has become increasingly important in the healthcare sector through the development of dynamic, virtual replicas of 

patients and devices. With the incorporation of real-time data streams from IoT-enabled sensors, digital twins continually 

update to mirror a patient's physiological state and device status, providing healthcare professionals with actionable insights. 

This technology has already demonstrated efficacy in predictive maintenance across various industries [23]. It is now leading 

the way in patient monitoring, tailored treatment, and the early prediction of risk in medical applications [4]; [5]. 

 

Yet another disruptive innovation is Explainable Artificial Intelligence (XAI), which addresses the root of the problem of AI 

transparency in clinical decision support. In medicine, where accountability and trust are paramount, xAI makes AI-based 

predictions, such as diagnostic results, understandable and verifiable to clinicians [6]; [7]. Research suggests that explainability 

drives physician trust, enhances clinical adoption, and promotes adherence to ethical standards in AI-enabled medical care [8]. 

Augmented Reality (AR) is also transforming healthcare provision by superimposing interactive 3D anatomical information 

during surgical procedures, thereby improving accuracy and minimising errors. AR has also been applied to enhance patient 

education, providing interactive visualisations of diseases and treatment procedures, hence enhancing understanding and 

interest [9]; [10]. AR-based training platforms for medical practitioners have also been found to demonstrate quantifiable 

improvements in surgical effectiveness and clinical outcomes [11]. 

 

While blockchain, digital twins, xAI, and AR have each proven to be of great value, current research mostly investigates them 

separately, creating a gap in the combined use to construct intelligent, secure, and transparent healthcare ecosystems. To address 

this, the proposed work presents a single, integrating framework for healthcare that utilises blockchain for secure and 

impenetrable patient data management, digital twins for real-time monitoring and predictive analytics, xAI for open and reliable 

diagnostics, and AR for enhanced surgical accuracy and patient engagement. In particular, the research targets three main 

objectives: (1) IoT-driven digital twins for real-time monitoring and timely detection of aberrations, (2) early prediction of 

progression via temporal embeddings and calibrated modelling-based forecasting of deteriorating trajectories, and (3) an 

extension in the future for personalised treatment assessment via counterfactual simulations and reinforcement learning [22]. 

Collectively, this integration is a scalable, forward-looking, and patient-centred healthcare ecosystem that drives clinical 

outcomes, operational effectiveness, and user trust [17]. 

 

2. Review of Literature 

 

A patient digital twin platform secured by blockchain was suggested in Amofa et al. [12], where smart contracts were utilised 

to automate consent management and facilitate easy access to data. The platform was found to be resistant to tampering and 

provided efficient synchronisation of patient data among multiple stakeholders. The platform's power was in securing the digital 

twin ecosystem through decentralised governance. The study, however, stopped short of data security and access control, 

without moving toward predictive analytics, explainable diagnostics, or immersive interaction. In Hemdan and Sayed [13], 

blockchain, digital twin, and federated learning were integrated to improve secure healthcare systems. The framework 

supported distributed diagnostics and patient data privacy through the use of federated learning constructs. A multimodal dataset 

case study showed that predictive accuracy was enhanced when hospitals collaborated without exchanging raw data. Although 

this research further developed the use of privacy-preserving digital twins, it did not involve explainable AI or augmented 

reality, which means that transparency and user interaction remain open questions. The study in Nitschke et al. [14] proposed 

a clinical digital twin architecture with an emphasis on modularity, interpretability, and flexibility. By integrating ensemble 

learning with knowledge graphs, the system simulated patient trajectories that changed over time and yielded interpretable 

clinical insights. This work complements the urgent need to develop interpretable digital twins for patients. However, it did not 

address blockchain for secure data storage or augmented reality for interactive clinical decision-making, leaving voids in data 

integrity and visual representation [18].  

 

A blockchain-supported predictive digital twin method was proposed in Repetto et al. [15], integrating predictive analytics with 

tamper-proof data exchange. The method produced timely warnings of disease progression while facilitating tamper-proof data 

sharing between healthcare professionals. Testing revealed enhanced predictive accuracy compared to standard models. 

Although these strengths exist, the lack of explainable AI compromises the interpretability of predictions, constraining clinician 

trust and uptake in high-stakes environments. Lastly, Ferdousi and Hossain [16] proposed a responsible and multimodal digital 

twin system based on large language models and explainability tools. This system included multimodal inputs, feedback loops, 

and ethical compliance capabilities, promoting explainable and accountable predictions [19]. It showcased the capability of 

digital twins to facilitate personalised well-being in contrast to conventional healthcare systems. The absence of blockchain 

integration, however, limited its potential to ensure secure data governance, and the lack of augmented reality limited its ability 

to facilitate patient and clinician interaction [20]. Based on the Literature review, Table 1 presents a comparative Analysis of 

the proposed work with recent studies mentioned above [21]. 
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Table 1: Comparative analysis of proposed work with recent studies 

 

Feature / 

Aspect 

Blockchain-Secure 

Patient Digital Twin 

[12] 

Smart and Secure Healthcare with 

Digital Twins + Blockchain + 

Federated Learning [13] 

Proposed Work 

Core 

Objective 

Secure patient data 

sharing using blockchain 

and smart contracts 

Collaborative diagnostics with privacy-

preserving digital twins 

Unified intelligent healthcare 

framework 

Data Security 

and Privacy 

Strong blockchain-based 

access control and 

consent automation 

Blockchain with federated learning to 

ensure local data ownership 

Blockchain with smart contracts 

for secure governance + federated 

compatibility 

Digital Twin 

Integration 

Patient digital twin states 

logged on blockchain 

Digital twins for distributed diagnostics Hybrid patient and equipment 

twins for monitoring, prediction, 

and simulation 

Predictive 

Analytics 

Not included Predictive improvements via federated 

learning 

Built-in predictive modelling for 

early progression detection 

Explainable 

AI (xAI) 

Not addressed Limited to post-hoc analysis Native integration of xAI for 

transparent clinical decision-

making 

Augmented 

Reality (AR) 

Not supported Not supported AR interfaces for immersive 

visualisation in surgery and patient 

education 

Validation 

and Testing 

Evaluated for latency 

and storage cost 

Case study on EEG diagnostics Framework validation with real-

time monitoring + roadmap to 

treatment simulation 

Key 

Limitation 

Focuses only on 

security, lacks 

intelligence and 

visualisation 

Lacks explainability and AR, limited 

clinical integration 

Addresses all gaps by combining 

blockchain, DT, xAI, and AR in 

one framework 

 

3. Methodology 

 

Methodology, with integration of Blockchain, Digital Twins, Explainable AI (xAI), and Augmented Reality (AR) in healthcare. 

The workflow is shown in Figure 1. 

 

 
 

Figure 1: IHMP-BDxAR framework algorithm 
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Figure 2 illustrates how the IHMP BDxAR Framework integrates Blockchain, Digital Twins, Explainable AI (xAI), and 

Augmented Reality (AR) into a unified, smart healthcare system. It begins with the use of a permissioned blockchain to securely 

store patient and equipment information, leveraging cryptographic hash functions and smart contracts to manage access and 

consent. Wearable sensors and medical devices continuously collect real-time health data, which is used to continually update 

digital twins —virtual replicas of patients and equipment that exist in real-time. Static and real-time data are used to train 

machine learning models to forecast potential health risks and equipment failures. The xAI module translates these forecasts 

using unobtrusive methods, such as SHAP, providing doctors with straightforward diagnostic data. Where abnormalities are 

detected, smart contracts validate the user's authentication and trigger alerts. Augmented Reality is being used to assist surgeons 

with superimposed real-time patient anatomy and vital signs, and to allow patients to interactively visualise their health status 

and care plan. All decisions and actions are securely recorded on the blockchain. The system is continually fine-tuned through 

feedback from patients and clinicians, resulting in model improvements and enhanced user interfaces. The algorithm fosters an 

anticipatory, transparent, and patient-centred healthcare environment that is highly accurate, secure, and user-friendly.  

 

 
 

Figure 2: IHMP-BDxAR framework workflow algorithm 

 

The above Algorithm outlines the sequential process of the envisioned IHMP-BDxAR framework, which combines IoT-

enabled data collection, blockchain-based security, digital twin simulation, explainable AI, and augmented reality into an 

integrated healthcare system. Step 1 involves preprocessing raw sensor readings from patients through normalisation and 

denoising to produce standardised input signals suitable for analysis. Step 2 secures these preprocessed data streams by 

encrypting them, creating transactions, and storing their hashes in a permissioned blockchain, making them immutable and 

controlling access through smart contracts. In Step 3, the cleaned and secured data are used to continuously update patient-

specific digital twins in real time, thereby duplicating health states. Step 4 utilises predictive models in the digital twin to predict 

short-term patient outcomes or risk, facilitating proactive clinical action. In Step 5, explainable AI methods, such as SHAP or 

LIME, provide feature attribution vectors that indicate which physiological signals affected each prediction, thereby enhancing 

transparency and clinical trust. Lastly, Step 6 maps the forecasted states and explanations into interactive, immersive augmented 

reality interfaces, allowing surgeons and patients to see conditions interactively, while also updating the model parameters via 

gradient descent to refine accuracy over time. Collectively, these steps provide secure data governance, real-time monitoring, 

predictive intelligence, interpretability, and immersive interaction, rendering the framework technically sound and clinically 

valuable. 

 

4. Experiment and Result 

 
The experimental validation of the proposed framework was conducted in a controlled hospital environment with 50 patients 

and 20 interconnected medical devices. Biomedical sensors were deployed to capture critical physiological signals, including 

heart rate, oxygen saturation, and blood pressure, which are essential parameters for real-time monitoring and assessment. Data 

from these sensors was transmitted through Raspberry Pi 4 edge gateways (Quad-Core Cortex-A72, 4 GB RAM), selected for 

their affordability, portability, and capability to perform lightweight preprocessing before transmission to the central server. 

The backend infrastructure comprised an Intel® Core™ i7-11700 CPU (8 cores, 16 threads), 16 GB DDR4 RAM, an NVIDIA 

GeForce RTX 3060 GPU with 8 GB VRAM, and a 512 GB NVMe SSD, running Ubuntu 20.04 LTS, offering a balance between 

computational performance, energy efficiency, and support for machine learning workloads. The blockchain network was 

implemented using Hyperledger Fabric v2.5, along with Go-based smart contracts, to ensure secure and permissioned access 

control for medical data. Digital twin models were developed in Python 3.9 using TensorFlow 2.12 and PyTorch 1.13, while 
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Apache Kafka managed high-throughput streaming between sensors, edge nodes, and twins. Explainable AI utilised established 

SHAP and LIME libraries for interpretability, and augmented reality interfaces were built with Unity 2022.3 LTS and the 

Vuforia SDK. These interfaces were validated on both Microsoft HoloLens 2 and an ARCore-enabled Google Pixel 6 

smartphone to demonstrate usability across clinical and educational settings. 

 

The integrated system combined Blockchain, Digital Twins, xAI, and AR to deliver secure, transparent, and intelligent 

healthcare operations. Blockchain ensured tamper-proof medical record management with high throughput, while digital twins 

maintained real-time synchronisation of patient and equipment states, achieving precise anomaly detection and predictive 

insights. The xAI models provided interpretable diagnostic support, enhancing clinician confidence, whereas AR overlays 

improved surgical precision and patient engagement through immersive visualisation. The results were evaluated against the 

three main objectives: (1) real-time monitoring, validated in Steps 4.2 and 4.6 with synchronization accuracy above 99% and 

predictive accuracy above 90%; (2) early progression prediction, demonstrated in Steps 4.3 and 4.6 through accurate health 

risk forecasting and transparent diagnostics; and (3) personalized treatment assessment (future extension), initiated in Step 4.8 

with feedback-driven model refinement. Complementary contributions from Step 4.1 (Blockchain Setup), Step 4.4 (AR in 

Surgery), Step 4.5 (AR for Patient Education), and Step 4.7 (Blockchain for Secure Data Sharing) ensured robust data 

governance, immersive visualisation, and efficient information exchange. Collectively, the experimental findings substantiate 

the framework’s effectiveness and establish its potential as a scalable foundation for intelligent, patient-centred healthcare. 

 

4.1. Blockchain Setup 

 

The blockchain infrastructure was deployed using Hyperledger Fabric to securely manage patient records and medical device 

logs in a hospital environment. This permissioned blockchain was chosen because of its immutability, fine-grained access 

control, and resistance to tampering, all of which are critical for healthcare applications. Each transaction was stored as a 

cryptographically hashed record, and smart contracts were used to automate access and consent management, ensuring that 

only authorised users could retrieve or update data. This design provided secure, transparent, and efficient healthcare data 

governance without relying on a centralised authority. 

 

Table 2: Blockchain performance metrics in the healthcare system 

 

Metric Value 

Transactions per Second (TPS) 500 TPS 

Data Retrieval Time 1.8 seconds 

Data Update Time 2.2 seconds 

 

The performance of the blockchain layer was validated using three key metrics: Transactions per Second (TPS), Data Retrieval 

Time, and Data Update Time. As reported in Table 2, the system achieved 500 TPS, a retrieval time of 1.8 seconds, and an 

update time of 2.2 seconds. These results confirm that the blockchain can handle real-time medical operations with minimal 

latency. The high throughput ensures scalability when multiple devices and patients are active simultaneously, while the low 

retrieval and update times guarantee timely access to patient data during critical care. Overall, the results in Table 2 establish 

that the blockchain backbone provides a reliable foundation for integrating digital twins, explainable AI, and augmented reality 

in the proposed healthcare framework. 

 

 4.2. Digital Twin Synchronisation 

 

Digital twins were developed for 50 patients and 20 medical devices, continuously updated every 5 seconds using IoT-enabled 

sensors. These digital replicas captured real-time patient vitals, including heart rate, oxygen saturation, blood pressure, and 

equipment status metrics. By integrating static medical history with streaming sensor data, the digital twins were able to 

maintain highly accurate simulations of patient conditions and device performance. The synchronisation was facilitated by edge 

processing units and a streaming backbone powered by Apache Kafka, ensuring that twin states reflected real-world changes 

with minimal latency. 

 

Table 3: Digital twin synchronisation and prediction accuracy 

 

Digital Twin Type Synchronisation Accuracy (%) Prediction Accuracy (%) 

Patient Digital Twins 99.5 92 

Medical Equipment Digital Twins 98.8 90 

 

The results of synchronisation accuracy and predictive capability are summarised in Table 3. Patient digital twins achieved 

99.5% synchronisation accuracy with a prediction accuracy of 92%, while medical equipment twins achieved 98.8% 
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synchronisation accuracy and 90% prediction accuracy. These findings highlight that the digital twin layer not only mirrored 

real-time physiological states with remarkable precision but also enabled early forecasting of patient deterioration and 

equipment failures. By surpassing 99% synchronisation and achieving more than 90% predictive accuracy, the results in Table 

3 validate the reliability of the digital twin module as a foundation for real-time monitoring and proactive clinical interventions. 

 

4.3. xAI Model Training 

 

The explainable AI (xAI) system was trained on a dataset of 100,000 historical patient records, enabling it to generate 

interpretable diagnostic predictions. This model processed live data streams from the digital twins and provided physicians 

with feature attribution scores that highlighted the most influential physiological signals. Such interpretability was achieved 

using SHAP and LIME libraries, which translated raw predictions into human-understandable insights. By ensuring 

transparency, the system aimed to bridge the gap between black-box AI predictions and clinician trust in decision support 

systems. 

Table 4: xAI diagnostic accuracy and doctor satisfaction by condition 

 

Condition Diagnosed xAI Accuracy (%) Doctor Satisfaction (1-5) 

Cardiac Issues 94 4.6 

Respiratory Conditions 91 4.4 

Diabetic Complications 89 4.3 

 

The diagnostic accuracy of the xAI model across major health conditions is shown in Table 4. The system achieved 94% 

accuracy for cardiac issues, 91% for respiratory conditions, and 89% for diabetic complications. Clinician satisfaction scores 

ranged from 4.3 to 4.6 out of 5, reflecting the clarity and usability of the system’s outputs. These results confirm that the xAI 

framework not only provided high diagnostic accuracy but also delivered explainability that physicians found reliable and 

actionable. As illustrated in Figure 3, a strong correlation exists between accuracy and satisfaction, reinforcing the notion that 

transparent AI predictions enhance clinical acceptance in high-stakes environments. 

 

 

 

Figure 3: X(AI) accuracy and doctor satisfaction condition 

 

4.4. Augmented Reality in Surgery 

 

To evaluate the role of augmented reality (AR) in surgical support, Microsoft HoloLens devices were deployed to overlay real-

time anatomical models and vital signs during surgical procedures. This immersive visualisation allowed surgeons to 

superimpose patient-specific 3D images directly onto the operative field, improving situational awareness. By integrating 

digital twin data with AR visualisation, the system aimed to enhance both the accuracy and efficiency of surgical interventions 

while minimising error rates. The comparative results are presented in Figure 4, which shows metrics for surgery time and 

surgical precision error before and after AR integration. Surgery duration was reduced from 120 minutes to 105 minutes, 

representing a 12.5% improvement, while surgical precision error dropped from 8.5% to 5.2%, reflecting a 38.8% improvement. 

These findings establish AR as a powerful tool for improving surgical efficiency and precision, validating its effectiveness as 

part of the integrated framework. 
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Figure 4: Surgery metrics 

 

The results demonstrate that AR not only reduces the time required for complex procedures but also significantly enhances 

surgical accuracy, thereby improving patient safety. This diagram highlights how AR significantly improves both surgical 

efficiency and precision, reducing the overall time required for surgery and minimising error rates. 

 

4.5. AR for Patient Education 

 

Beyond surgical applications, AR was also employed to enhance patient understanding of health conditions and treatment plans. 

Patients interacted with immersive 3D models of their anatomy and disease progression, enabling them to visualise the impact 

of therapies and lifestyle interventions. This interactive approach bridged communication gaps between patients and healthcare 

providers, improving patient engagement and adherence to care plans. 

 

 
 

Figure 5: Patient understanding: Before and with AR 

 

The outcomes are summarised in Figure 5, which shows patient understanding before and after AR usage. Engagement and 

comprehension levels improved by 38.5%, as patients found visual models significantly more intuitive than text-based 

explanations. These results highlight AR’s value in patient education, as it transforms abstract medical information into tangible 

and interactive experiences. By improving understanding, AR fosters greater patient confidence, compliance, and satisfaction 

with the treatment process. 

 

4.6. Predictive Analytics with Digital Twins 

 

The predictive analytics component of the digital twin system was evaluated for its ability to generate early warnings of patient 

deterioration and equipment malfunctions. Machine learning models embedded within the twins continuously analyzed 
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temporal patterns in patient vitals and device performance. This proactive capability enabled healthcare providers to intervene 

before critical events occurred, thereby reducing the risks associated with delayed diagnosis or equipment failure. 

 

 
 

Figure 6: Prediction accuracy of patient vs medical equipment digital twins with values 

 

The predictive performance is illustrated in Figure 6, which compares the prediction accuracies for patients and equipment. 

Both models achieved greater than 90% accuracy, validating their reliability for real-time decision-making in healthcare. By 

generating accurate early alerts, the predictive analytics module ensured timely interventions, reduced clinical risks, and 

improved patient outcomes. These findings confirm that predictive intelligence is a critical extension of the digital twin system, 

supporting proactive healthcare management. 

 

4.7. Blockchain for Secure Data Sharing 

 

Blockchain technology was further validated for its ability to securely share medical data across distributed healthcare 

providers. Smart contracts automated the process of access control and data sharing, ensuring that retrieval and updates were 

consistent, transparent, and compliant with patient consent policies. This interoperability enabled seamless communication 

across hospital departments and with external stakeholders, while preserving patient privacy. 

 

 
 

Figure 7: Blockchain data retrieval and update time performance 

 
The results are presented in Figure 7, which compares blockchain retrieval and update times. Data retrieval averaged 1.8 

seconds, while update times were slightly higher at 2.2 seconds, both of which fell under the 3-second benchmark for real-time 

applications. These metrics confirm that blockchain ensures fast, tamper-proof, and secure data exchange without introducing 

bottlenecks into clinical workflows. By combining immutability with efficiency, blockchain strengthens trust in healthcare data 

operations and supports integration with other modules of the framework. 
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4.8. Continuous Feedback and System Optimisation 

 

The integrated system underwent iterative refinement through continuous feedback from patients, clinicians, and surgeons. 

This feedback loop was used to improve xAI interpretability, optimise AR interfaces, and fine-tune blockchain transaction 

handling. By incorporating user-driven adjustments, the framework evolved into a more adaptive and user-friendly system that 

better matched clinical needs. 

 

Table 5: Feedback-based improvements in xAI diagnostic accuracy and AR usability 

 

Metric Before Feedback After Feedback Improvement (%) 

xAI Diagnostic Accuracy (%) 90 94 4 

AR Usability (Satisfaction, 1-5) 4.2 4.6 10 

 

The results of this feedback process are summarised in Table 5. The diagnostic accuracy of xAI improved from 90% to 94%, 

reflecting a 4% increase, while AR usability satisfaction scores increased from 4.2 to 4.6, representing a 10% improvement. 

These findings highlight the importance of human-centred design in healthcare technology. By actively integrating clinician 

and patient feedback, the system achieved higher accuracy, greater usability, and improved trustworthiness, demonstrating its 

capacity for adaptive optimisation in real-world healthcare environments. 

 

4.9. Comparative Analysis with Existing Frameworks 

 

This step, presented in Table 6, compares the proposed IHMP-BDxAR framework with existing approaches. In terms of 

blockchain performance, the proposed system achieved 500 TPS with < 2.2s latency, outperforming earlier works that managed 

only 200–300 TPS with higher delays. For digital twin accuracy, prior studies were limited to basic patient state logging or 

~85% synchronisation, whereas the proposed framework achieved over 99% synchronisation and over 90% predictive 

accuracy, ensuring highly reliable real-time monitoring. In the area of explainable AI trust, earlier works either neglected 

interpretability or offered minimal post-hoc explanations (~80% trust), while the proposed system integrated SHAP and LIME, 

achieving 94% diagnostic accuracy with high clinician confidence. Finally, for the effectiveness of augmented reality, which 

was not previously supported, the framework demonstrated substantial improvements, enhancing surgical precision by 38.8% 

and patient comprehension by 38.5%. Collectively, Table 6 validates that this step positions the IHMP-BDxAR framework as 

a comprehensive, secure, and intelligent healthcare solution that bridges the gaps left by earlier works. 

 

Table 6: Comparative results of the proposed framework with recent works 

 

Step Blockchain-Secure Patient 

Digital Twin [12] 

Smart and Secure Healthcare 

with DT + Blockchain + FL 

[13] 

Proposed IHMP-BDxAR 

Framework 

Blockchain 

Performance 

Ensures security and consent 

control; limited throughput (~200 

TPS) and higher latency. 

Uses federated privacy but has 

moderate throughput (~300 

TPS). 

Achieves 500 TPS with <2.2 s 

latency through optimised 

Hyperledger Fabric. 

Digital Twin 

Accuracy 

Basic patient state logging; no 

predictive forecasting. 

Diagnostic twins with federated 

updates; ~85% synchronisation. 

Achieves >99% synchronisation 

and >90% predictive accuracy. 

Explainable 

AI Trust 

Not addressed: black-box models. Minimal xAI; some post-hoc 

explanations (~80% trust). 

Integrated SHAP/LIME; 94% 

diagnostic accuracy with high 

clinician trust. 

AR 

Effectiveness 

Not included. Not included. AR overlays improved surgical 

precision by 38.8% and patient 

comprehension by 38.5%. 

 

5. Conclusion 

 

This paper addresses key gaps in healthcare systems, where blockchain, digital twins, explainable AI (xAI), and augmented 

reality (AR) have been researched separately, and explores their combined potential for enhanced capabilities in securing data 

management, predictive intelligence, diagnostic transparency, and immersive interaction. The main goals of the outlined 

framework are threefold: to facilitate real-time monitoring through IoT-based digital twins that operate in real time by 

continuously replicating patient and equipment states, to offer early progression prediction by incorporating forecasting models 

into the digital twin framework, and to advance toward individualised treatment assessment through counterfactual simulations 

as a future development. To bridge current gaps, blockchain technology with smart contracts offers secure, immutable, and 
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permissioned management of health data, providing a robust foundation for data integrity. Digital twins provide continuity and 

prognostic analysis of patient states. xAI produces explainable results to enhance clinician acceptance of AI outputs. 

Additionally, AR provides immersive visualisation to enhance surgical precision and patient interaction. Experimental 

verification demonstrated blockchain throughput of 500 TPS with low latency, digital twins achieving over 99% 

synchronisation accuracy and above 90% predictive accuracy, xAI with 94% diagnosis accuracy and high clinician trust, and 

AR enhancing both surgical accuracy and patient understanding by nearly 40%. By combining these four technologies into a 

unified architecture, the framework that bridges the gap between secure data governance, predictive modelling, interpretability, 

and immersive visualisation creates a solid foundation for intelligent and patient-driven healthcare ecosystems. 

 

5.1. Future Work 

 

Although the current work effectively illustrates the capabilities of the proposed framework in real-time monitoring and early 

progress prediction, a key direction of future work is the achievement of personalised treatment assessment. This goal involves 

expanding the digital twin from monitoring and prediction to function as a safe counterfactual simulation platform where 

different treatment strategies can be tested before clinical implementation. Future efforts will focus on creating twin-based 

treatment sandboxes that simulate patient trajectories across various intervention scenarios, estimating outcomes, uncertainty, 

and safety risks. Causal inference approaches, including doubly robust estimation and counterfactual ranking, will be 

incorporated to ensure that treatment recommendations are unbiased and patient-specific. Concurrently, reinforcement learning 

strategies informed by safety awareness, like conservative offline policy optimisation, will be investigated to characterise 

therapy policies that optimise clinical benefit at reduced risk. Further efforts will be needed to empirically validate these 

modules using large-scale clinical data resources, such as MIMIC-IV, and condition-specific databases, like OhioT1DM, to 

achieve generalizability across heterogeneous patient populations. In addition to treatment personalisation, future horizons also 

involve enhancing scalability through federated learning, addressing fairness in subgroups, and strengthening governance 

frameworks for the ethical and trustworthy deployment of digital twin systems in real-world healthcare. 
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